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SMALL RESONANT SCATTEREPS AND THEIR USE FOR

FIELD MEASUREMENTS

ABSTRACT

A general formulation for the back-scattered field from loaded

objects is given. It is shown that small resonant objects produce a

much greater back-scattered field than small nonresonant ones. The

theory is applied to short dipoles and small loops. The use of small

resonant scatterers to measure electric and magnetic fields by

scattering techniques is discussed. Resonant scatterers are found to

have several advantages over nonresonant scatterers when used for

field measurements.
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I INTRODUCTION

The field scattered by short straight wires has been used to measure

microwave electric fields.1 -3 To separate the scattered field from the

incident field more easily, the scattered field has been modulated by

mechanical methods,2 and by diodes°3 Microwave magnetic fields have been

measured by the field scattered from a small loop of wire, using two

diodes such that they modulate the field due to the magnetic moment of

the loop, but do not modulate the field due to the electric 
moment.4

Scattering techniques for measuring electric and magnetic fields are

attractive because no receiving equipment or transmission lines need be

connected to the scatterer. This is in contrast to methods which detect

the signal received by probes and loops. Hence, scattering methods

usually disturb the field to be measured less than do receiving methods.

This paper presents an analysis of small tuned scatterers, and proposes

their use in scattering methods for measuring electric and magnetic

fields. The use of resonant scatterers instead of nonresonant scatterers

gives the following advantages. (a) The scattered field from resonant

scatterers is much larger than that from nonresonant scatterers. Of the

order of 30 db, improvement can be obtained. (b) The magnetic moment of

a loop scatterer can be greatly enhanced without materially changing the

electric moment, This allows one to use a tuned loop scatterer for most

magnetic field measurements without the use of a complicated modulation

scheme. (c) If modulation is desired, it can be accomplished in several

ways not available for nonresonant scatterers. One can modulate the tuning

reactance, or vary the scatterer size, or frequency modulate the field,

as discussed in section VIII. On the other hand, disadvantages of using



2

resonant scatterers are (a) tuning of the scatterer is required, and (b)

construction of the tuned dipole scatterer is more complicated than the

untuned one.

II. GENERAL THEORY

Figure 1 represents the general problem of back-scattering from a

loaded scatterer. There are two objects, denoted by 1 and 2, each having

a pair of closely-spaced terminals, also denoted by 1 and 2. Object 1,

excited by a current source across terminals 1, produces an incident

field. Object 2, loaded by an impedance ZL across terminals 2, represents

a loaded scatterer. The back-scattered voltage is defined as the difference

between voltage appearing across terminals 1 when the scatterer (object 2 and

ZL) is present and when it is absent. The case of plane-wave back scattering

is obtained when objects 1 and 2 are infinitely far apart. The general

formulation of the problem is similar to that used by Professor Y. Y. Hu

for loaded dipole scatterers.
5

object 1 !ti

Fu .l2

Figure 1. The general case of back scattering by a loaded scatterer.



Terminal-pairs 1 and 2 of Figure 1 define a two-port network.

For linear matter,

V1 -Zll I1 +Z1 212
(1)

V2 Z21,1 + Z2212

where VI , 1 and V2, 12 are the voltages and currents at terminals 1 and 2,

respectively. When all matter is isotropic, Z12 = Z 1. When the load

impedance ZL exists across terminals 2,

V2 =-I 2 , (2)

Using (1) and (2), one finds the voltage at terminals 1 as

22 Z

Now define VIO as the voltage across terminals 1 when object 2 is

absent and I1 is impressed at terminals 1. Let the input impedance

to this one-port network be denoted by

z V0(4)1 Il

Define the back-scattered voltage as the difference between the voltage

at terminals 1 when object 2 is present and when it is absent, that is

AV = V1 - V10  (5)

Then, using (3) and (4) in (5), one obtains
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Z12

AV (zlZI) Z2 2 Z + j1 (6)
11 1 z 2+ II

Hence, the general problem of back-scattering from a scatterer loaded by

an arbitrary impedance ZL involves the determination of three parameters;

(z11 - zl), Z12, and Z2 2 .

Variational formulas for impedance parameters are well-known.
6

Consider objects 1 and 2 to be perfectly conducting, and let

= current due to source Ii impressed at terminals i,

the other terminals open circuited.

(7)
= electric field due to

In general, 9, is related to the , by a tensor (or dyadic) Green's

function r by

X = f f r(,~)~~ ds' (8)

where T and " denote radius vectors. A stationary formula for any of

the impedance elements is then

The formula for Z is the same as for Z except that object 2 is now

absent. Defining
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i0 = current on object 1 due to I, when object 2 is absent

(10)
Zi0 = electric field due to 2lO

one has the stationary formula

Z i0 " 0 ds (11)

These formulas are applied to particular problems by assuming trial currents

and calculating the desired impedances. Adjustable constants (variational

parameters) can be included in the trial currents and evaluated by the

Ritz procedure. A discussion of the evaluation of the Z's by the Ritz

procedure is given in Appendix A.

Returning now to (6), one may note that the second term on the right-

hand side is maximum when

ZL - - i IM(Z22) (12)

for passive Z . Equation (12) will be used to define a resonant scatterer.

When (Z1 1 - Z1) and Re(Z2 2 ) are small, the scattered voltage is maximum

at resonance, It follows a resonance curve when ZL is tuned through

resonance. Conducting scatterers small with respect to wavelength usually

exhibit such resonance phenomena.
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III. PLANE-WAVE BACK SCATTERING

The general formulas can be specialized to plane-wave back scattering

as follows. Let object 1 vanish so that terminals 1 are in empty space.

The field of I1 impressed across terminals 1 is then simply the field of

a current element I I in free space. To be specific, let I A be

z-directed and located on the -y axis a distance r from the origin, as

shown in Figure 2. As r---)o one obtains in the vicinity of the origin

a plane-wave field

10=uEe - jky  (13)

A. r 0

IlV-.

Figure 2. Plane-wave back scattering is obtained by letting

It recede to infinity.



whereiz = unit z-directed vector, k = wavenumber (= 2i/%), and

"Yl e-Jkr

E 0 e -- - ( 1 4 )
2?kr

where = intrinsic impedance ( /7) and X = wavelength.

When the scatterer is present, the incident induces a current on the

scatterer, which in turn produces a scattered field zs. The component

of Z in the direction of I A at I A is called the back-scattered field.

The area for which the incident field contains sufficient power to produce,

by omnidirectional radiation, the same field as is back-scattered by the

scatterer, is called the echo area a of the scatterer. In equation form

a -lim 4r2 1 1 (15)
E0

where x is a unit vector in the direction of IIA. In terms of the

scattered voltage

U1 - Zs = AV/1 (16)

and the echo area is given by

C = r-- lim _ - (r) 4 AV 12 (17)

where A&V is given by (6). The echo area is therefore of the form

A- 1 A B 12 (18)% 2 -r z 22 + Z L
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where
2

((Z
B lim 4i () Zl 2 l

2

The Z parameters can be obtained from (9) and (10) using (13) as the

field from I. Note that JA1 2 /A is alk2 when ZL = m, that is, when the

scatterer terminals are open circuited. The scatterer is then unloaded,

and one can use the known stationary formula 7

(z n l - z1 ) ( (20)

11 J ~ ~2 ds

where k2 is the current on the open-circuited scatterer when it is

excited by the incident plane wave, and £12 is the corresponding field.

An explicit formula for A is obtained by using (13), (14) and (20)

in the first equation of (19). The result is

(k ff ej'kY J-1 2 ds)(

JJ j 12 " Z12 ds

which is still stationary. For a first-order approximation to B, one

can assume E = E given by (13) and (14). Then from (9) and the first

1i-l -10

equation of (19) one obtains
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B= ~ffeIky 4 d.rds) (22)

where Z is the current on the scatterer when excited by 12 at its terminals.

Procedures for obtaining higher-order approximations to B are discussed

in Appendix A. Finally,

z2 ff2 - 12• ds (23)

2

is the well-known stationary formula for the input impedance to the

scatterer when viewed as a transmitting antenna.

The formulation of this section considers only linearly-polarized

incident plane waves. The case of arbitrary polarization can be treated

as the superposition of two linearly-polarized waves. The general

procedure is given by Professor Kouyoumjian.
8

IV. LOADED DIPOLES

The unloaded dipole has been analyzed by Professor Tai, 9 and the

loaded dipole by Professor Hu.5 Because Professor Hu's results are

difficult to specialize to short dipoles, and because it is desired to

illustrate the application of the general formulas, the equations for)short dipoles will be developed here,
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Figure 3 represents a short center-loaded dipole in a plane-wave

field. When the dipole is excited by 12 across its terminals the

current can be approximated by

-2 z ia1 24

where a is the wire radius and b the dipole length. This current can

be considered to be a filament for calculating B; hence from (19)

ii

tE ZL b

Figure 3. A center-loaded dipole in a plane-wave field.
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b 2 2
B 1 j2 I) dz 1 (kb) (2)

1 2 ~ Y~ 2 zi dzb ~2(5
-b/2

The derivation of input impedance for dipole antennas can be found in many

places. For the current of (24), one can approximately evaluate (23) as

[ (kb)2  3mn (2b/a) (26)

22 - L. 2 kb

When the dipole is open circuited and excited by the incident plane wave

the current can be approximated by

12= u [cos k (Ii- ) - cos k (27)

The evaluation of (21) is then similar to the evaluation of (25) and

(26), the result being

A . -j(kb)3  (28)

96[An(b/a) - 2]

The above evaluations give good accuracy for kb e- l. For longer dipoles

one can use Professor Hu's results. Tables of her calculations are

given in Appendix B because published curves cannot be read to sufficient

accuracy.

Three special cases of interest are (a) the unloaded dipole, ZL = 0,

(b) the resonant dipole, satisfying (12), and (c) the open-circuited

dipole, ZL = 0. For the short unloaded dipole, A is small compared to the
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second term of (18), and the first term of (26) is small compared to the

second term. One then has

a (kb)6  (29)m (292

% 64. £3 Jn(2b/a) - 71

For resonance, ZL should be an inductor adjusted according to (12); hence

zL =- J _- 1 3 In (2b/a) - 7 (30)
= ~kb (0

Now ZL Just cancels the second term of (26), and one has for the short

resonant dipole

a . = 0.716 (31)

Thus, the echo area of a small loss-free resonant dipole is independent

of its physical size. This is analogous to the case of a small receiving

dipole, which has an effective aperture independent of its physical
10

size. For actual dipoles, losses due to the finite resistivity of the

conductor will substantially reduce the echo area of very small dipoles.

This is considered in section VII. When Z = w (the open-circuited

cese), only the first term of (18) remains and

(kb)6
a 96 232 (32)

9216 nt [In(b/a) - 2
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This is the smallest possible echo area for a short dipole in the given

orientation. For arbitrary orientations, all of the above echo t.reas

should be multiplied by sin4 9, where 9 is the angle between the dipole

axis and the vector of the incident wave.

Figure 4 illustrates the variation of echo area with frequency for

dipoles of fixed dimensions. The case b/a = 150 is shown. Curve (a)

is for an unloaded dipole, curve (b) is for a dipole continually tuned

to resonance (ZL is varied as X is varied), curve (c) is for a

dipole tuned to resonate when b = X/10 by a fixed inductance L, and

curve (d) is for an open-circuited dipole. The numerical values were

obtained from the above small-dipole formulas when kb < 1, and from

Professor Hu's calculations when kb > 1 (Appendix B).

Note that the input impedance to a short dipole, Equation (26), is of

the form of that for a series R-C circuit. When tuned by an inductance,

the short dipole behaves similarly to a series R-L-C circuit. Hence, re-

sonance curves for short dipole scatterers are about the same as a series

R-L-C resonance curve. A quality factor defined as

Jim z 221 (33)Q- Re Z 22

has approximately the same relationship to the width of the echo area

resonance curve as the Q of an R-L-C circuit has to the width of its

power resonance curve. For short dipole scatterers

Q l12 3 in (2b/a) - 7 (34)
(kb)

3
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3.0

(b)

1.0

0.3

0.3 (a)

0.0

0.0- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0.00 - ___ _

0 1 2 3 56
kb

Figure 4. Echo area of (a) unloaded dipole, (b) resonant dipole, (c) dipole

resonated by fixed L, and (d) open-circuited dipole. b/a .l 0.



which illustrates how the Q increases as the dipole is made shorter.

The Q of the loss-free X/10 dipole of curve (c) of Figure 4 is 485.

Conductor losses will, of course, materially reduce the Q of very short

dipoles. If a short loss-free dipole is resonated by a fixed inductance

at a frequency w r then at some other frequency w in the vicinity of

resonance

2-1

9-[ L+ 0 2~ 1 -K (35)

This result is obtained from (18) using (25), (26), (30), and neglecting A.

V. LOADED LOOPS

Unloaded wire loops in a plane-wave field have been analyzed by
8

Professor Kouyoumjian. A general analysis of loaded loops of arbitrary

size has not yet appeared in the literature. An analysis of small loaded

loops in a plane-wave field is given in this section.

Figure 5 represents a small circular loop of wire, loaded by an

impedance ZL. When the loop is excited by a source 12 across its

terminals, the current is approximately uniform, that is,

where 4 is the unit v-directed vector. From (22) one calculates
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ZA

E d/

Figure 5. A loaded loop in a plane-wave field.

2,, 2

k
0

The input resistance to a small loop with constant current is well-known

and given by

Re(Z22) 9 i (kd)1  (38)

The input reactance to a small loop is simply wL where L is the low-

frequency inductance; hence



I
17

Im (Z2 2 ) = A [n (Ld) 2 (39)

When the loop is open circuited and excited by a plane wave, the current

distribution depends markedly on the position of the loop terminals.

When they are along the z axis, as shown in Figure 5, the current can

be approximated by

;L2 = sin 0(40)

One can then evaluate A according to equation (21). The result is

A (41)A -16 [An(4d/a)-2]

The assumed currents, equations (36) and (40) are just the first two

terms of the expansion used by Professor Kouyoumjian, and alternatively

equations (37) and (41) could be abstracted from his small-loop formulas.

The above formulas give reasonably accurate results when kd < 1.

The three special cases (a) an unloaded loop, (b) a resonant loop,

and (c) an open circuited loop, will now be considered. For the unloaded

loop, ZL = 0, equation (38) is small in magnitude compared to (39), and

(26) reduces to
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a 9x (kd) 6  (42)

X 1024 [In(4d/a) - 2)2

This is identical to Professor Kouyoumjian's small loop result. For

resonance, Z should be a capacitor adjusted according to (12); hence

z a [In (L-d) - 2) (43)
L JWC 2j

Now Z cancels (39) and Z is given by equation (38). The first term

of (18) is then negligible compared to the second term, and

a 9(1)

9 = 0.716 (44)

Note that this is identical to the echo area of the short resonant dipole,

equation (31). Again conductor losses will materially reduce a for very

small loops, as discussed in Section VII. When the loop is open circuited

( = ), only the first term of (18) remains and

x 2 256 [n(4d/a) - 2)2(

The open-circuit echo area is sensitive to the position of the loop

terminals, but it is always smaller than the short-circuit echo area,

equation (42), for small loops. When the loop of Figure 5 is rotated about
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the z axis through an angle 0, the parameter B, equation (37), should be

multiplied by sin 2. This results in (44) being multiplied by sin4 9, and

(42) multiplied by (2 + sin 2) 2/9. Equation (45) is unchanged.

Figure 6 shows the variation of echo area with frequency for loops of

dimensions d/a = 200. Curve (a) is for an unloaded loop, curve (b) is

for a loop continuously tuned to resonance, curve (c) is for a loop tuned

to resonate when d = X/l0 by a fixed capacitance C, and curve (d) is

for an open-circuited loop. These curves are only approximate because

calculations for the general loaded loop are not available. For kd < 1,

the small loop formulas can be used. Some points on the unloaded loop

curve were abstracted from Professor Kouyoumjian's calculations.

Just as for the short dipole, the small loop behaves similarly to a

series R-L-C circuit. The quality factor is again defined by (33),

which, for small wire loops, becomes

48 = n(4/a) - 2 (46)
1 (kd)3

The Q of the loss-free )/l0 loop (curve c of Figure 6) is 292. This

would be reduced by conductor losses for an actual loop. If a small loss-

free loop is resonated by a fixed capacitance at a frequency wr, then

at some other frequency w in the vicinity of resonance

2  -w1 -1
(-.!)(W -_r )(47)

X 2 V[1 + W Wr -

This equation is obtained from (18) using (37), (38), (39), (46) and

neglecting A.
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3.0

(b)
1.0

2

0.3

(a)

0.1

(c)

0.03

0.01

0.003

00.2 o.4 ~ 0. o6

Figure 6. Echo areas of (a) unloaded loop, (b) reson~ant loop, (c) loop reson.-

ated by fixed C, and (d) open..circuited loop. d/a = 200.
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VI. SMALL SCATTERERS IN AN ARBITRARY FIELD

For the general problem of back-scattering, Figure 1, the back-scattered

voltage is always given by (6). In general, the presence of the scatterer

(object 2) modifies the current on the originally excited object (object 1),

and vice versa. Appendix A considers the complete formulation of the

problem taking into account this proximity effect. For this section it

is assumed that the scatterer is small enough and far enough from object 1

to neglect such interaction. In other words, it is assumed that the source

of the field to be measured is not materially changed by the ,.ntroduction

of the scatterer. Then Z 1 Zl, and the first term of (6) is small. When

the scatterer is small and resonant, (Z11 - Z1 ) is negligible compared to

the second term of (6). (For example, compare curves c with d in Figures

4 and 6.) Furthermore, Z22 is a characteristic of the scatterer alone.

Hence, when the proximity effect is neglected, only the parameter

Z -1 ff Z.-1ds (48)1I2 - 112

depends upon the field into which the scatterer is placed.

Let xi = ixx + uyY + uzz denote the radius vector from the coordinate

origin (chosen at the midpoint of the scatterer) to a field point. Let

Z(X) = F(x,y,z) denote the field into which the scatterer is introduced.

Then, in the vicinity of the origin, Z can be expanded in the Taylor series

V )=  + (X V) Z(O) + ... (49)

where the notation (X " _)F(O) means that X is set equal to zero after

differentiation in F, but not in X. One has the identity
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( F -V x (50)

The last term is zero, (Z .7)X = Z, and V X J - jZ. Hence

(X-:)d= ZZ - F + JWEX (51)

and equation (49) can be written as

( ) = . 1 X -(0)] + j W X D(O) + ... (52)

where again , is set equal to zero in Z only after differentiation. The

higher order terms of the expansion can be neglected if T is made small

enough.

Consider the scatterer to be a small z-directed tuned dipole at 1 = 0,

as in Figure 3. Let I(z) denote the current on the dipole when it is excited

by 12 = 1(0) at its terminals. Then

ZI I z F dz (53)
1 b/2

where F is given by (52) with r = u z. The second term of (52) is-z

orthogonal to az and hence

- 2 1 z 6Z-B- + Ez(0) dz (5)12 12_ Y 7z
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If the dipole terminals are centered, I(z) is an even function of z, and

the first term of the integrand is odd. Then

Z i- E (O) Idz= -2 E(O) ()
12 1I1 zj II (1 2 -b/2 12

where P2 is the current moment of the dipole. Hence, Z12 is proportional

to Ez(O), and AV is proportional to Ez2 (0). The scattered voltage due to

a small dipole in an arbitrary field is therefore proportional to the

square of the componert of Z along the wire, and the dipole scatterer

can be used to measure electric fields. Note that this is true for a

tuned dipole only if it is center loaded, else the first term of (54)

does not vanish.

Now let the scatterer be a small tuned loop, such as shown in Figure

5. When excited by 12 the loop current is approximately uniform. Hence,

z12 : 12 f 12 • d! (56)

where the integral is taken once around the loop. Using (52) in (56),

one has

z12 -( ).(57)
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The term ( ") is not a true gradient because the derivatives of are

evaluated at = 0. The first integral gives JQ. a and the second gives

x dX = Fd.A x =- 2A (58)

where is the vector area of the loop. Thus

1

and Z12 is proportional to the component of D in the direction of the

loop moment (perpendicular to the loop area). For example, for the

loop of Figure 5, Z = (R/4)d2 u , and Z12 is proportional to B X . Hence,

the scattered voltage due to a small resonant loop is proportional to

the square of the component of A perpendicular to the loop, and the

scatterer can be used to measure magnetic fields. This result is

valid for loops of arbitrary shape. It is not valid for untuned loops,

because the first term of (6) is then of the same order of magnitude

as the second term. Even for resonant loops, if Z were very large and

A very small at some point in space, the scattered voltage would no

longer be a measure of A because the first term of (6) might be

appreciable.
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VII. EFFECT OF WIRE RESISTANCE

The effect on echo area and back scattering due to the finite conductivity

of wires easily can be incorporated into the previous solutions. Assume that

the wire has sufficiently high conductivity that (a) the current distribution

on the scatterer is not materially changed from that on a perfect conductor,

and (b) the resistance per unit length R of the wire can be approximated

by the surface resistivity divided by the circumference of the wire. Then,

for nonmagnetic conductors,

1 (60)

where a = wire radius and a = conductivity of the wire. In most small

scatterer applications the first term of (6) is negligible compared to the

second, and Z12 depends only on the current distribution. Hence, the only

significant change introduced by wires of finite conductivity occurs in the

calculation of Z 22 . This change can be accounted for by adding an I 2R loss

to the previously derived radiation impedance. Hence

Z22 =Rloss +Z2 2  (6)

0

where Z is the loss-free radiation impedance given by (23). For

wire scatterers,

Rloss 1 - f I 12R di (62)
12 wire
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However, when the scatterer is loaded, there is an additional loss in the

loading impedance

ZL .2RL + JX (63)

For resonant dipoles, this RL of the resonating inductor is more important

than Rloss in limiting the back-scattered field from short dipoles.

For example, for a short dipole scatterer, the current is given by (24)

and

Rloss 2 I22 (1 jzj) 2 R dz

2 -b/2

3a W

Fur a copper dipole (a = 5.7 x 10 7 ) with b/a 150 operating at

X = 0.1 meters, one has R loss 0.12 ohms. If the dipole is b = X/l0 in

length, then from (6) one finds Re(Z 22) = 2 ohms. This is much larger than

the loss resistance. However, one needs a resonating inductor. If the

inductor is constructed of the same wire as the dipole, the wire will be

of the order of X/2 in total length. It then has a resistance of

RL z R(X/2) = 1.8 ohms (65)

which is approximately equal to the radiation resistance. The Q of the

scatterer plus ZL is then approximately half of the 485 unloaded Q
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calculated in section IV, or Q a 250. This will reduce the echo area by

about 3 db over what it was in the loss-free case. In general, for short

resonant dipole scatterers,

(66)

where QO is the loss-free Q of the dipole, given by (34), and QL is the

Q of the resonating inductance.

For the wire loop, the terminating impedance i s a capacitor, which is

usually high Q. Then the principal losses are those of the loop, given by

Rloss R(d) (67)

For example, taking a copper wire loop having d/a = 200 and % = 0.1 meter,

one calculates Rloss 1.45 ohms. Considering the loop to be d = X/10

in diameter, from (38) one has Re(Z 2) = 1.9 ohms. In this case the loss

resistance is of the same order of magnitude as the radiation resistance,

and the Q is reduced from 292 in the nonlossy case to Q = 165 in the lossy

case. Neglecting losses in the resonating capacitor, one has in general

for small resonant loops

S i t l + 0 (68)Q Q6 I Re (z 22)

where % is the loss-free Q, given by (46), and Re(Z0 ), is given by (38).
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VIII. TUNING AND MODULATION

The use of resonant scatterers for field measurements requires some sort

of tuning procedure. There are basically three ways that this might be

accomplished: (a) the load impedance Z can be varied, (b) the dimensions
L

or geometry of the scatterer can be varied, and (c) the frequency of the field

can be varied. At the longer wavelengths, say of the order of several meters,

ordinary variable inductors and capacitors can be used for tuning according

to method (a). As the wavelength is made shorter, the construction of

variable reactors becomes more difficult, and method (b) becomes attractive.

For example, consider the scatterer of Figure 7a. It consists of a piece of

wire of length a little less than %/2, with the central portion wound in a

loosely-spaced coil. If one stretches the dipole in the axial direction, the

(b)

(a)

Figure 7. Small resonant scatterers, (a) dipole, (b) two-turn loop.
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capacitive reactance of the dipole changes rapidly (see equation 26) while

the inductive reactance of the coil changes very little. Hence, the dipole

can be tuned by small adjustments of its length. Similarly, Figure 7b shows

a loop scatterer that can be tuned by compressing it. The loop consists of

two or more loosely-spaced turns of wire with the two ends connected

together. The total length of wire is a little more than one wavelength.

(Hence, for a two turn loop, d w X/6; for a three turn loop, d w X/9). As

the loop is squeezed closer together (in the axial direction), the coupling

between adjacent wires increases and the loop resonates at shorter wavelengths.

Finally, if it is desired that scatterers of fixed dimensions and loads be

used, the signal frequency can be varied (method c). In this case one

constructs a scatterer to resonate at approximately the desired frequency,

and then the signal oscillator is tuned.

It is easier to separate the scattered signal from the incident

field if the former is modulated and the latter not modulated. For this

reason diode loads with a modulated bias have been used with untuned

dipole and loop scatterers. 3 ' 4 Mechanical rotation of unloaded dipoles
2

has also been used to obtain modulation of the scattered signal. These

methods of modulation can continue to be used with resonant scatterers.

However, some alternative modulation methods can be used with resonant

scatterers that cannot be used with nonresonant ones. Because the resonant

scatterers are high Q, small changes in either (a) the tuning reactance, or

(b) the scatterer dimensions, or (c) the signal frequency can produce large

changes in the scattered field. To utilize possibility (a), one could

either mechanically or electrically modulate the tuning reactance. For
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(b), a vibration of the scatterer could be used to modulate the scattered

signal. The scatterer might be made mechanically resonant at the desired

modulation frequency, as well as electrically resonant at the signal-

frequency. Then the desired mechanical vibration could be obtained from

a sound wave impinging upon the scatterer. Finally, to utilize method (c)

the original signal frequency could be frequency modulated. The scattered

signal would then be amplitude modulated. Only a small frequency deviation,

of the order of I/Q of the scatterer, would be needed for the frequency

modulation of the signal generator. Note also that the modulation

frequency of the scattered amplitude-modulated signal from the scatterer

would be twice the modulation frequency of the original frequency-modulated

signal, if the center frequency is the resonant frequency of the scatterer.

To take full advantage of this difference between the scattered signal

and the incident signal, special detection circuits can be devised. For

example, an AM detector having a tuning Q large compared to the Q of

the scatterer, and l/Q small compared to the frequency deviation, can be

used.
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APPENDIX A

A Formulation of the General Two-port Problem

The two-port problem of Figure 1 can be viewed as a pair of coupled

antennas. Professors Hu and Hu have considered the general variational

solution for a system of N coupled linear antennas. 11 Their analysis

is actually applicable to a general N-port system of conducting bodies if

one makes the following simple changes. Replace all scalar Green's

functions by tensor Green's functions, all filaments of currents by

surface currents, and all line integrals by surface integrals.

Combining equations (9) and (10) of section II one has the

variational formula

ij
-i (A-1)

The last equality defines the scalar product (i' J )" In general,

consists of nurrent induced on object i by I ,, denoted by g

plus current induced on object j by I ,, denoted by 1j; hence

Following Professors Hu, one assumes trial currents of the form
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A A A A A

AA

(A-3)
A A A41" bl 1 + b + + bMI

A2 A ,+b 1 ~

where the a ard b are variational parameters, and the vector currentsn n
A% A

n and satisfy

A A

9 =n 0 at terminals I and 2 (A-4)

if n 0, and

S=f •J x di 12 4 "xdA (A-)

where these integrals are taken around terminals 1 and 2, respectively.

In other words, the entire excitation currents I1 and 12 are obtained

from and 0" and all other trial currents are zero at the terminals.

Professors Hu show that one should choose the number of variational

parameters an equal to the number of b n , since the order of approximation

corresponds to the smallest number of a or b n It is also shown belown n

that there should be as many variational parameters in Lj as in Zjj, else

the solution for Z12 will diverge as the objects are moved farther apart.
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In other words, M and N should be the same numbers in 1 and Z, as is

shown in (A-3)

Substitution of (A-2) and (A-3) into (A-i), and setting Zij/6an =

z ij/6bn = 0 for all n, yields the following formulas. For Z12, one

has either

ZI12 (1 ( 0, Jo)  I [ O, Jl)  (I0, J2)  •.. (1O, JN)]

((i' J2) "(Il JN)  (11' Jo)

(I2 , Jl )  
2  J2) . . . 02 JN) N2  J0 )

(A-6)
. . . .. . . . . . . . .. . .

(I N ) Jl )  (I N , J2) . . (I N ' JN) (I N , J 0

or alternatively,

(I0' J0 )  (I0' Jl )  (I0' JN )

(I, , J 0 )  (I1 Jl )  1 (I , JN)

(1 1N , J0 )  ( N , Jl 1 1 ( N , JN ]  A7Zl2 Tl' T ' ' N)= ( . . . . . . . '._. (A-7)

N 1 N JN
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AA

where the scalar products (Im, J ) are as defined by equation (A-i).
AFormulas for Zl are (A-6) and (A-7) with all In'S replaced by the

A AS

corresponding Jn Is. Formulas for Z are (A-6) and (A-7) with all Jn
n ~ 22n

replaced by the corresponding I 'ns.

To illustrate the difficulty that occurs if zij does not have the

same number of variational parameters as j, suppose

AA

J111 = O Z2= jl

A ^ (A-8)

L22 = bll

(This choice was purposely excluded by equations A-3.) The mutual

impedance (A-6) or (A-7), then becomes

A A (Io, J1 ) (I, J)

Z12 = (IO , J0 ) ( ^A-9)
(1I1,  Jl )

As the two objects are separated

(Ao , Jo)-- o ( I , J1)--*o (A-AA)

because these products involve currents on different objects, and

(1o, J1 )-C 01  (I l , JO)--*Cl 0  (A-11)

(C's denote constants) because they involve currents on the same object.

Hence, as the two objects are separated, by (A-9) one has ZI2-4a,

an impossibility. This absurd result can be explained by noting that
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(I, Jo)
al = 00 - l -- (A-12)

in the variational solution, and hence no value of a, can improve the solution.

The parameter b behaves similarly. One can view this as a poor choice of

trial functions. However, if 9l2 is chosen to have the same number of

variational parameters as 92' and similarly for 912 and ;ii' as required

by equations (A-3), then the difficulty does not arise. To show this,

note that, as the objects are separated, the denominator of (A-7) becomes

of the form

constants 0's

I (A-13)
0's I constants

which is finite. If ZiJ does not have the same number of variational

parameters as Jji, then one or more rows or columns of zeros appear in

the 'constants" sections of (A-13), and the denominator of (A-7) vanishes

as the objects are separated. Of course, no such difficulty arises in the

calculation of Z and Z22'
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APPENDIX B

Tables of the Impedance Parameters for the Loaded Dipole

Professor Y.Y. Hu has made available the numerical results of her

calculations for the loaded dipole. Published curves 5 of the impedance

parameters cannot be read accurately enough for calculations. Hence,

tables of the impedance parameters are published in this appendix.

The echo area of a center-loaded dipole can be written in the form

S2 (B-l)

Z22 + L

where U and V are related to the A and B of Section IV by

U = 30A V = 3OB I1 2  (B-2)

The following tables give U, V, and Z22 vs. kb for the values

b
-_ = 43, 150, 1800, 22000 (B-3)a

These correspond, respectively, to

= 2 An b = 7.5, 10, 15, 20 (B-4)a

which is the parameter used by Professor Hu.
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b/a = 43

kb Re(U) Im(U) Re(V) Im(V) Re(Z22) Re (Z22)

1.0 0.002 0.24 0.07 13.87 4.28 -455.71

1.2 0.004 0.41 0.15 17.06 6.41 -362.68

1.4 0.01 0.68 0.30 20.42 9.13 -292.47

1.6 0.02 1.05 0.55 24.05 12.58 -236.67

1.8 0.05 1.56 0.93 28.Ol 17-0o -190.21

2.0 0.10 2.21 1.52 32.39 22.56 -149.93

2.2 0.20 3.10 2.43 37.22 29.65 -113.90

2.4 0.37 4.17 3.71 42.62 38.63 -80.75

2.6 o.66 5.69 5.77 48.74 50.27 -49.74

2.8 1.24 7.50 8.79 55.43 65.04 -20.44

3.0 1.39 9.11 11.81 62.62 83.31 9-11

3.2

3.4 5.66 16.13 27.80 80.00 141.75 54.62

3.6 8.30 19.38 38.48 88.11 179.31 72.80

3.8 13.00 23.34 54.29 95.00 227.30 79.4!,

4.0 19.64 26.79 74.24 98.1 280.82 70.75

4.2 28.46 28.64 97.40 94.45 333.67 40.52

4.4 38.50 27.74 120.00 82.41 374.54 -10.33

4.6 48.4o 23.38 137.61 61.99 392.14 -75.92

4.8 56.32 16.32 146.79 37.40 383.53 -141.42

5.0 61.43 7.88 147.04 13.09 353.13 -19-.75

5.2 63.86 -0.48 140.63 -7.49 311.22 -230.29

5.4 64.37 -7.86 13o.64 -23.07 267.12 -248.92

5.6 63.89 -13.97 119.77 -34.11 226.96 -255.14

5.8 62.66 -18.99 108.38 -41.43 190.61 -251.51

6.0 61.4o -23.o 98.14 -46.14 16o.63 -242.89

6.2 60.19 -26.27 88.95 -49.01 136.25 -231.05

6.4 59.09 -28.98 80.72 -50.59 116.19 -217.24
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b/a 43 (cont.)

kb Re(U) Im(o 1e(V) Im(V) Re(Z22 ) Im(Z2 2)

6.6 58.18 -31.27 73.44 -51.30 99.97 -202.50

6.8 57.46 -33.25 66.97 -51.46 86.90 -187.37

7.0 56.90 -35.01 61.17 -51.20 76.49 -171.95

7.2 56.50 -36.57 55.96 -50.65 68.36 -1%.44

7.4 56.23 -58.01 51.21 -49.90 62.22 -140.90

7.6 56.08 -39.33 46.84 -49.01 57.81 -125.27

7.8 56.04 -40.58 42.80 -48.02 55.05 -1o9.58

8.0 56.10 -41.74 39.07 -46.92 53.89 -93.72

8.2 56.22 -42.85 35.56 -45.74 54.26 -77.58

8.4 56.41 -43.90 32.24 -44.50 56.20 -61.1o

8.6 56.67 -44.92 29.08 -43.24 59.80 -44.15

8.8 56.99 -45.89 26.07 -41.89 65.21 -26.54

9.0 57.35 -46.84 23.18 -40.50 72.66 -8.13

9.2 57.63 -47.63 20.35 -39.10 82.14 1.30

9.4 17.75 -56.45 95.08 31.4(2

9.6 58.55 -49.08 14.85 -36.11 110.90 54.42

9.8 59.10 -50.09 12.35 -54.51 130.92 79.01

10.0 59.65 -50.82 9.72 -32.91 156.35 106.28

10.2 60.15 -51.52 7.09 -31.28 188.72 137.13

10.4 60.71 -52.19 4.40 -29.58 230.56 172.79

10.6 61.28 -52.81 1.62 -27.85 285.51 214.88

1o.8 61.84 -53.38 -1.33 -26.12 359.59 266.18

11.0 62.47 -53.96 -4.56 -24.35 462.74 330.85

11.2 63.09 -54.48 -8.18 -22.51 611.53 415.40

11.4 63.s5 -54.83 -12.51 -21.14 846.35 539.16

11.6 64.14 -55.23 -17.91 -19.92 1241.04 71.108

11.8 64.71 -55. 9 -25.45 -17.78 1929.28 1o16.67

12.0 65.16 -55.80 -37.11 -21.O1 3817.08 1909.60
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b/a 150

kb Re(U) Im(U) Re (V) Im(V) Re(Z 2 2 ) Im(Z 2 2 )

1.0 0.0006 0.13 0.04 14.40 4.59 -718.57

1.2 0.0012 0.23 0.09 17.61 6.82 -572.05

1.4 ?.003 C-37 0.17 20.98 9.62 -462.01

1.6 0.007 0.58 0.31 24.54 13.10 -374.82

1.8 O.016 o.86 0.52 28.38 17.43 -302.50

2.0 0.03C 1.21 .84 32.55 22. '6 -240.04

2.2 O.060 1.68 1.31 37.10 29.37 -184.38

2.4 0.11 2.24 1.97 42.11 37.52 -134.i

2.6 0.19 3.04 2.98 47.71 47.78 -85.16

2.8 0.35 3.97 4.39 53.89 60.51 -38.90

3.0 0.52 5.12 6.29 6o.96 76.60 6.83

3.2 o.85 6.60 9.08 68.9o 97.16 52.294

3.4 1.46 8.43 131.8 77.87 124.13 97.52

3.6 2.22 10.70 18.70 88.10 158.03 144.25

3.8 3.54 13.48 26.79 99.52 203.11 190.08

4.0 5.64 16.88 38.47 112.02 262.69 233.64

4.2 8.96 20.81 55 29 124.81 341.42 270.16

4.4 14.10 25.02 78.96 136.o8 442.84 290.89

4.6 21.80 28.74 111.15 142.06 567.62 279.95

4.8 32.35 30.47 150.80 136.91 703.90 217.92

5.0 44.94 28.04 191.89 113.95 82o.46 89.35

5.2 56.78 20.o6 222.40 72.13 872.63 -92.46

5.4 64.37 7.86 231.71 21.20 836.o6 -277.60

5.6 66.57 -5.02 220.64 -24.57 733.74 -415.64

5.8 64.41 -16.05 196.48 -57.55 602.45 -489.58

6.0 60.38 -24.11 169.72 -77.15 480.97 -511.87

6.2 55.89 -29.68 144.81 -87.08 379.99 -501.98

6.4 51.65 -33.44 123.32 -90.85 300.41 -474.81



V 41
b/a = 150 (cont.)

kb Re(U) Im(U) Re(V) Im(V) Re(Z22.' Imk<Z 22 )

6.6 47.97 -36.00 105.54 -91.03 239.46 -439-91

6.8 44.87 -37.80 90.89 -89.25 194.92 -402.33

7.0 42.29 -39.09 78.77 -86.40 157.44 -364.28

7.2 40.16 -40.09 68.70 -83.01 130.48 -327.06
7.4 38.39 -4o.88 60.21 -79.42 1io.04 -291.02

7.6 36.93 -41.55 52.49 -75.76 94.70 -256.19

7.8 35.72 -42.14 46.75 -72.17 83.54 -222.53

8.o 34.73 -42.67 41.33 -68.63 75.87 -189.76

8.2 33.89 -43.17 36.54 -65.19 71.17 -157.54

8.4 33.20 -4t.64 32.28 -61.86 69.16 -125.67

8.6 32.64 -44.12 28.45 -58.64 69.67 -94.12

8.8 32.18 -44.58 24.98 -55.50 72.67 -61.59

9.0 31.80 -45.04 21.80 -52.44 78.23 -28.62

9.2 31.44 -45.4o 18.83 -49.48 86.54 5.52

9.4 31.27 -45.90 97.94 41.4o

9.6 31.09 -46.18 13.48 -43.67 112.96 79.55

9.8 30.96 -46.75 11.13 -4o.84 132.34 120.97

10.0 30.89 -47.18 8.78 -38.05 157.26 166.60

10.2 30.84 -47.59 6.53 -35.26 189.27 217.90

lO.4 30.83 -48.oo 4.28 -32.48 230.84 276.94

10.6 30.86 -48.41 2.02 -29.66 285.60 346.47

10.8 30.89 -48.79 -0.26 -26.84 359.57 431.14

11.0 30.99 -49.19 -2.74 -23.96 462.65 537.89

11.2 31.10 -49.58 -5.45 -20.94 611.40 677.57

11.4 31.15 -49.83 -8.51 -18.31 846.23 883.46

11.6 31.27 -50.15 -12.35 -15.44 1240.92 1204.65

i..8 31.41 -50.46 -17.51 -11.29 1929.18 1678.63

12.0 31.49 -50.65 -25.67 -1i.6o 3817.01 3230.45
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b/a- 1800

kb Re(U) Im(U) Re(V) Im(V) Re(Z22) Im(Z22)

1.0 0.0001 0.07 0.02 14.87 4.86 -1215.39

1.2 0.0003 0.11 o.04 18.07 7.17 -1008.23

1.4 0.0008 0.19 0.09 21.42 10.03 -815.76

1.6 0.002 0.29 o.16 24.94 13.53 -663.76

1.8 o.oo4 0.42 0.26 28.68 17.8o -538.16

2.0 0.007 0.59 o.41 32.66 22.91 -430.25

2.2 o.o14 o.81 o.63 36.95 29.12 -334.71

2.4 0.025 1.08 0.93 41.60 36.57 -247.66

2.6 o.o4 1.44 1.39 46.70 45.64 -166.12

2.8 o.08 1.87 1.98 52.30 56.78 -88.14

3.0 0.07 2.40 2.82 58.54 70.17 -11.64

3.2 0.18 3.07 3.98 65.54 86.98 64.86

3.4 0.31 3.95 5.70 73.56 108.29 1,2.95

3.6 o.46 4.94 7.83 82.56 134.63 224.30

3.8 0.71 6.22 10.98 93.07 168.99 31o.05

4.o 1.12 7.84 15.46 105.36 214.06 403.50

4.2 1.74 9.89 22.00 119.89 274.85 505.23

4.4 2.80 12.48 31.64 137.12 358.35 617.30

4.6 4.51 15.78 46.36 157.61 477.08 740.26

4.8 7.39 19.91 69.23 181.43 649.65 870.34

5.0 12.36 24.88 lO5.82 207.21 907.06 991.26

5.2 20.99 30.00 164.47 228.61 1290.08 1053.28

5.4 35.13 32.57 252.29 226.84 1813.96 934.01

5.6 53.78 26.61 354.70 167.57 2341.66 449.93

5.8 67.55 7.64 408.99 37.65 2479.46 -386.96

6.0 66.79 -14.67 371.67 -91.03 2072.22 -IO83.44

6.2 56.70 -29.11 290.08 -159.14 1488.82 -1353.88

6.4 45.80 -35.49 215.34 -177.89 1018.49 -1339.66
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b/a -1800 (cont.)

kb Re(U) Im(U) Re(V) Im(V) Re(Z22) Im(Z

6.6 37.21 -37.49 16o.75 -173.82 701.8o -1218.37
6.8 30.92 -37.63 12.66 -161.96 495.41 -1074.44

7.0 26 37 -,5705 9591 -14835 35965 -9.36.37

7.2 23.05 -36.28 76.72 -135.27 268.62 -812.20

7.4 20.52 -35.50 62.52 -123.43 206.02 -701.82

7.6 18.6o -34.79 51.67 -112.82 162.28 -6c3.57

7.8 17.10 -34.18 43.22 -103.40 131.60 -514.80

8.0 15.92 -53.68 36.49 -95.03 110.33 -434.,

8..- 14.97 -33.26 32.22 -87.51 95.93 -358.95

8.4 14.19 -32.92 26.42 -80.72 86.96 -288.37

8.6 15.55 -52.66 22.55 -74.55 82.43 -220.90

8.8 13.05 -52.47 19.26 -68.90 81.77 -155.31

9.0 12.59 -52.32 16.39 -63.68 84.65 -90.57

9.2 1-2.19 -52 15 13.85 -58.81 90.99 -25.61

9.4 11. 91 -52 14 11.92 -53.97 100.99 4O.69

9.6 u . 65 -'p.o2 9.57 -49.97 114.98 109.48

9.8 n.43 -.2.10 7.78 -45.89 133.64 182.30

10.0 .I 1.2 6  -3 15 6.08 -41.98 158.05 26o.84

10.2 11.11 -52.17 4.50 -38.23 189.71 347.35
10.4 10.98 -52.25 2.99 -34.61 251.05 445.03

10.6 lo.88 -32.51 1.54 -51.01 285.68 557.85

10.8 tu.80 -52.58 0.10 -27.51 359.57 692.76

11.0 lu.74  -32.5 -1.43 -24.02 462.59 859.46

11.2 10.70 -32.62 -2.97 -20.45 611.3o 1072.91

i1.4 io.64 -32.66 -4.73 -17.25 846.05 1384.89

11.6 lu.62 -32.76 -6.92 -13.95 1240.57 1865.22

ii.8 10.O -32.87 -9.75 -9.12 1928.40 2526.57

2.20 10.58 -32.91 -14.25 -8.55 3815.00 4966.11



V
44

b/a 22,000

kb Re(U) Im(U) Re(V) Im(V) Re(Z 2 2) im(z2 2 )

1.0 0.0001 o.o4 0.01 15.01 4.96 -1815.26

1.2 0.0001 0.08 0.03 18.24 7.31 -1447.23

1.4 0.0003 0.12 o.06 21.59 lO.18 -1172.07

1.6 0.0007 0.19 0.10 25.09 13.69 -955.05

1.8 o.oo16 0.27 0.17 28.79 17.92 -776.07

2.0 0.003 0.138 0.27 32.70 22.96 -622.59

2.2 o.006 0.53 o.41 36.90 29.02 -487.10

2.4 0.01 0.70 0.60 41.42 36.24 -363.98

2.6 0.02 0.94 0.89 46.33 44.92 -249.11

2.8 0.03 1.21 1.27 51.69 55.38 -139.61

3.0 0.05 1.55 1.79 57.64 68.03 -32.68

3.2 0.08 1.98 2.50 64.26 83.52 73.89

3.4 0.13 2.52 3.52 71.76 102.89 182.36

3.6 0.19 3.15 4.83 80.22 126.66 295.18

3.8 0.29 3.96 6.71 90.03 157.18 '41.495

4.o o.44 4.98 9.34 101.50 196.71 544.81

4.2 0.69 6.26 13.13 115.13 249.29 688.89

4.4 1.09 7.90 18.65 131.55 320.83 852.11

4.6 1.73 10.03 27.03 151.76 422.09 1041.34

4.8 2.82 12.83 40.10 176.97 570.50 1264.58

5.0 4.75 16.56 61.60 208.86 799.81 1530.25

5.2 8.35 21.53 98.99 248.79 1174.86 1840.07

5.4 15.43 27.75 167.5 294.16 1821.00 2149.51

5.6 29.58 33.25 294.60 323.19 2936.30 2235.02

5.8 53.49 28.25 488.64 249.45 4466.68 1356.o8

6.0 70.01 0.53 587.18 -4.97 4928.79 -906.63

6.2 59.45 -26.93 457.93 -217.65 3532.13 -2485.48

6.4 41.98 -36.26 296.92 -267.45 2105.89 -2645.57



45

b/a = 22,000 (cont.) 4

kb Re(U) Im(U) Re(V) Im(V) Re(Z2 2) Im(z2 2 )

6.6 29.84 -36.70 193.72 -250.11 1264.88 -2323.76

6.8 22.35 -34.85 133.05 -220.22 801.02 -19W.21

7.0 17.63 -32.74 96.14 -192.13 535.11 -1642.21

7.2 14.52 -30.88 72.46 -168.52 374.57 -1382.59

7.4 12.37 -29.33 56.38 -148.97 272.52 -1167.78

7.6 i0.82 -28.08 44.93 -132.74 205.26 -986.84

7.8 9.67 -27.07 36.49 -119.13 160.02 -831.38

8.o 8.8o -26.26 30.08 -107.58 129.438 -694.84

8.2 8.11 -25.59 25.01 -97.57 108.90 -571.93
8.4 7.60 -25.06 20.96 -88.84 95.83 -459.34

8.6 7.13 -24.64 17.62 -81.11 8 .49 -354.11

8.8 6.77 -24.29 14.87 -74.22 85.90 -253.83

9.0 6.47 -24.02 12.50 -67.96 87.44 -156.54

9.2 6.21 -23.75 10.46 -62.25 92.85 -60.39

9.4 6.02 -23.62 8.99 -56.70 102.21 36.37

9.6 5.85 -23.43 7.11 -52.12 115.76 135 52

9.8 5.70 -23.38 5.74 -47.57 134.12 239.19

10.0 5.58 -23.32 4.47 -43.25 158.-3 349.78
10.2 5.48 -23.27 3.28 -39.17 189.87 47.27

1o.4 5.40 -23.25 2.18 -35.27 231.13 6o4-.85

10.6 5.32 -23.24 1.15 -31.45 285.71 758.51

10.8 5.26 -23.24 0.10 -27.81 359.57 940.21

11.0 5.22 -23.28 -0.91 -24.15 462.57 1161.82

11.2 5.18 -23.32 -2.07 -2o.45 611.27 1441149

11.4 5.14 -23.30 -3.26 -17.25 845.93 1847.61

1.6 5.11 -23.34 -4.75 -13.95 1240.35 2466.59

11.8 5.10 -23.41 -6.68 -9.30 1929.67 3284.60

12.0 5.09 -23.46 -9.41 -9.06 3483.16 4966.08
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